Hmm 😵.. Capacity for proofs... how important is that?
No logic is sound unless it is proved. The
ability to prove is a testament to one of the three things:
a) clarity of
thought,
b) loudness of mouth,
c) willingness to self deceive 😛.
But more often than not, i
guess its useful when its a); c) is not bad either, for it counter balances its other opposite, which is self doubt 😉
Somewhere between self doubt and self deceit lies self confidence, right? Not sure of b) but who knows, its probably used pretty widely, or? 😆
Ahem ahem... course correction.. back to the utility of proofs...
Take for example the rather simple 2-D Peak finding problem.
The 2-D Peak finding problem:
From
a given n-by-n matrix A, find a (i.e., any) number A(i, j) such that
all valid elements in A at positions A(i-1, j), A(i+1, j), A(i, j-1),
A(i, j+1) are less than or equal to A(i, j).
Valid element means that the position computed is a valid legal position in the matrix.
For example: A(-1, 0) is NOT a valid element.
Simply
put, an element is a peak, when the elements if any, immediately above,
below, to the left, and to the right of it, are less than or equal to
the given element.
In the example 5-by-5 matrix below, the peak elements are highlighted.
60 | 100 | 103 | 80 | 95 |
125 | 120 | 108 | 101 | 45 |
130 | 30 | 93 | 90 | 156 |
115 | 40 | 98 | 65 | 125 |
75 | 50 | 96 | 55 | 25 |
Well, i guess it varies from person to person. But for some reason, i have this inherent discomfort with anything more than one dimension.
And i get the urge to write about it as i have a feeling there maybe a few more confused souls like me who feel dazed thinking in more than one dimension 😛.
i tried for several hours to come up with a less than $O(n^2)$ algorithm, but just could not.
Started looking up for hints and tried the....
1-D Peak finding problem:
A peak in an array A means any A(i) such that both A(i-1) and A(i+1) are less than or equal to A(i).
For the beginning and end elements of the array, A(0) is a peak if A(1) ≤ A(0) and A(end) is a peak if A(end-1) ≤ A(end). Find such a peak from the array A.
1-D Peak finding algorithm
"A" (i.e. any) peak in this array can be found in O(logn) time using the following strategy:
1. Take a middle element, A(m) and check if it is a peak.If so, return A(m).
2. If not, either A(m+1) or A(m-1) or both would be greater than A(m)
3. Continue with step 1 on the right half, if A(m+1) >A(m)
Continue with step 1 on the left half, if A(m-1) > A(m)
If both A(m-1), and A(m+1) are greater than A(m), either half is fine.
Is this algorithm correct? Seems trivial enough to prove so.
[proof:1-D Peak finding algorithm]
Suppose A(m) is not a peak and A(m+1) > A(m).
In this case, A(m+1) will be a peak unless its own right neighbor, A(m+2) > A(m+1).
Lets assume A(m+2) meets this condition. Inductively, for A(m+2) to not be a peak, A(m+3) > A(m+2) and it can go on and on, only till the end of the array where the end element will turn out to be a peak.
Hence, when we follow the half where A(m+1) > A(m), we are guaranteed to find a peak.
We can argue similarly for the case when A(m-1) > A(m).
[proof:end]
Surprisingly so, this new found wisdom on the 1-D case got me no where with the 2-D case, and finally i looked up the algorithm 😁
However, i still could not convince myself very easily that the 2-D algorithm i looked up is actually correct.
Guess this is always the case with borrowed analysis, because it is less of an analysis and more of an assurance.
Anyways putting a stop to the sob, here is the most simple of the divide and conquer algorithms for the 2-D case:
O(nlogn) 2-D Peak finding algorithm
1. Find the maximum element of the middle column, let it be A(i, m).
If its a peak, return it and terminate.
2.a) If A(i, m-1) >= A(i, m) and A(i, m+1) ≤ A(i, m); then recurse in the left half of matrix.
2.b) Else If A(i, m+1) > A(i, m) and A(i, m+1) ≤= A(i, m); then recurse in the right half of matrix.
2.c) Else If A(i, m-1) >= A(i, m) and A(i, m+1) >= A(i, m); then recurse in either left or right half. (i.e., either of the halves is guaranteed to have a peak)
3. If the recursion reduces the matrix to a single column, just return the max of that column and terminate.
Sounds neat and simple to code up, but is the algorithm correct?
How do we go about its correctness? It was a bit of mind muddling experience for me, because for once in the evening i thought i got the proof but couldn't really write it down. And when i tried to write it down before bed, i couldn't really come up with the proof again.. Wonder if the evening was a moment of self deceit or a volatile intuition 🤔. Well, so i decided to give it a go in the morning instead when luckily i guess i could reason the correctness correctly.
So here is a proof for the above binary search algorithm for the 2-D peak:
i changed my original proof a bit starting with the base case first. This way, it is simpler to understand and takes fewer words i think.
[proof:O(nlogn) 2-D Peak finding algorithm]
Consider the base case (Step 3), a single column and n rows of elements. Lets call this column as c.
Its easy to see that the max of that column is a "peak" in that 1 column matrix. Lets call this peak as p.
Now, lets unwind the recursion, and add another column, c+1 of n elements to this matrix.
p ceases to be a peak in the new 2 column matrix only if column c+1 has an element greater than p in the same row as p.
But, Step 2.a) in the above algorithm ensures that not only the one next to p, but, all of the elements in column c+1 are less than p if column c+1 was skipped out of the search.
Fine, lets unwind a bit more, and add another column, c-1 of n elements to this matrix.
p ceases to be a peak in the new 3 column matrix only if column c-1 has an element greater than p in the same row as p.
However, Step 2.a) ensured that all the elements in column c-1 are indeed less than p if column c-1 was skipped out of the search.
Hence, inductively we can prove that when the algorithm hits the base case, it always finds a peak which is valid for the undivided input matrix
[proof:end]
The complexity of this algorithm is O(nlogn).
If you look at the design of this algorithm, you will notice, the main ingredient is to use the middle column as a virtual valley with the knowledge that the half next to this column has at least one element greater than any of the elements in this virtual valley, and hence there is a guarantee to find a peak in that particular half.
If you look at the design of this algorithm, you will notice, the main ingredient is to use the middle column as a virtual valley with the knowledge that the half next to this column has at least one element greater than any of the elements in this virtual valley, and hence there is a guarantee to find a peak in that particular half.
Now lets looks at the O(n) algorithm:
O(n) 2-D Peak finding algorithm
O(n) 2-D Peak finding algorithm
The O(n) algorithm extends this valley building effort both across the middle column as well as the middle row, and recurses into one of the quadrants where a peak is guaranteed to be found.
The algorithm goes as below:
1. Find the maximum element among all the elements of the middle row, $m_r$ and middle column, $m_c$
If the maximum is at the intersection of the row and column, it is definitely a peak, so return it and terminate.
2. If the maximum is a peak, return it and terminate.
3. If the maximum is not a peak, recurse is the quadrant where adjacent neighbor of the maximum is greater than the maximum.
4. When recursion is left with only one row, return the max of that row and terminate. Or, if the recursion is left with only one column, return that max of that column and terminate. Or, if the recursion is only left with one element, that one element must be the peak, return it, and terminate.
Bit more details on step3
i am just writing more details on step3 to clarify and maybe also to aid the proof which is coming up.
3.a. If the maximum A($m_r$, j) is in the middle row, and j > $m_c$, and A($m_r$ + 1, j) > A($m_r$, j), then recurse in the quadrant bounded by rows $m_r$ +1 to end, and columns $m_c$ + 1 to end.Below 7 by 7 table gives an example of this case:
$m_c$ = $m_r$ = 4, maximum is A(4, 5) = 4520.
But A(5, 5) = 4610 > A(4, 5), Hence we recurse in the bottom right quadrant.
3.b. Else if the maximum A($m_r$, j) is in the middle row,
and j > $m_c$, and A($m_r$ - 1, j) > A($m_r$, j), then recurse in the quadrant
bounded by rows 0 to $m_r$ -1, and columns $m_c$ + 1 to end. Below table gives an example of this case:
$m_c$ = 2, $m_r$ = 2, maximum is A(2, 3) = 4456.
But A(1, 3) = 4515 > A(2, 3), Hence we recurse in the top right quadrant.
Similarly it follows for other cases as below...
3.c. Else If the maximum A($m_r$, j) is in the middle row and j < $m_c$ , and A($m_r$ - 1, j) > A($m_r$, j), then recurse in the quadrant bounded by rows 0 to $m_r$ -1, and columns 0 to $m_c$ -1
3.d. Else if the maximum A($m_r$, j) is in the middle row and j < $m_c$ , and A($m_r$ + 1, j) > A($m_r$, j), then recurse in the quadrant bounded by rows $m_r$ +1 to end, and columns 0 to $m_c$ -1
3.e. Else if the maximum A(i, $m_c$) is in the middle column and i < $m_r$, and A(i, $m_c$ - 1) > A(i, $m_c$), then recurse in the quadrant bounded by rows 0 to $m_r$ -1 and columns 0 to $m_c$ -1
3.f. Else if the maximum A(i, $m_c$) is in the middle column and i > $m_r$, and A(i, $m_c$ - 1) > A(i, $m_c$), then recurse in the quadrant bounded by rows $m_r$ + 1 to end, and columns 0 to $m_c$ -1
3.g. Else if the maximum A(i, $m_c$) is in the middle column and i < $m_r$, and A(i, $m_c$ + 1) > A(i, $m_c$), then recurse in the quadrant bounded by rows 0 to $m_r$ -1 and columns $m_c$ + 1 to end.
3.h. Else if the maximum A(i, $m_c$) is in the middle column and i > $m_r$, and A(i, $m_c$ + 1) > A(i, $m_c$), then recurse in the quadrant bounded by rows $m_r$ + 1 to end, and columns $m_c$ + 1 to end.
The algorithm goes as below:
1. Find the maximum element among all the elements of the middle row, $m_r$ and middle column, $m_c$
If the maximum is at the intersection of the row and column, it is definitely a peak, so return it and terminate.
2. If the maximum is a peak, return it and terminate.
3. If the maximum is not a peak, recurse is the quadrant where adjacent neighbor of the maximum is greater than the maximum.
4. When recursion is left with only one row, return the max of that row and terminate. Or, if the recursion is left with only one column, return that max of that column and terminate. Or, if the recursion is only left with one element, that one element must be the peak, return it, and terminate.
Bit more details on step3
i am just writing more details on step3 to clarify and maybe also to aid the proof which is coming up.
3.a. If the maximum A($m_r$, j) is in the middle row, and j > $m_c$, and A($m_r$ + 1, j) > A($m_r$, j), then recurse in the quadrant bounded by rows $m_r$ +1 to end, and columns $m_c$ + 1 to end.Below 7 by 7 table gives an example of this case:
$m_c$ = $m_r$ = 4, maximum is A(4, 5) = 4520.
But A(5, 5) = 4610 > A(4, 5), Hence we recurse in the bottom right quadrant.
1923 | 3317 | 1784 | 4236 | 126 | 526 | 2583 |
4060 | 1068 | 1667 | 1263 | 3989 | 2461 | 4342 |
2764 | 139 | 4552 | 4029 | 502 | 2764 | 653 |
1347 | 2172 | 1614 | 2852 | 4520 | 4305 | 2199 |
4780 | 353 | 2606 | 1504 | 4610 | 3475 | 4515 |
1581 | 1132 | 719 | 38 | 1396 | 4285 | 4456 |
2607 | 3458 | 1651 | 3426 | 1078 | 4388 | 559 |
3328 | 2332 | 42 | 3865 | 378 | 3989 | 3959 |
$m_c$ = 2, $m_r$ = 2, maximum is A(2, 3) = 4456.
But A(1, 3) = 4515 > A(2, 3), Hence we recurse in the top right quadrant.
4610 | 3475 | 4515 |
1396 | 4285 | 4456 |
1078 | 4388 | 559 |
378 | 3989 | 3959 |
3.c. Else If the maximum A($m_r$, j) is in the middle row and j < $m_c$ , and A($m_r$ - 1, j) > A($m_r$, j), then recurse in the quadrant bounded by rows 0 to $m_r$ -1, and columns 0 to $m_c$ -1
3.d. Else if the maximum A($m_r$, j) is in the middle row and j < $m_c$ , and A($m_r$ + 1, j) > A($m_r$, j), then recurse in the quadrant bounded by rows $m_r$ +1 to end, and columns 0 to $m_c$ -1
3.e. Else if the maximum A(i, $m_c$) is in the middle column and i < $m_r$, and A(i, $m_c$ - 1) > A(i, $m_c$), then recurse in the quadrant bounded by rows 0 to $m_r$ -1 and columns 0 to $m_c$ -1
3.f. Else if the maximum A(i, $m_c$) is in the middle column and i > $m_r$, and A(i, $m_c$ - 1) > A(i, $m_c$), then recurse in the quadrant bounded by rows $m_r$ + 1 to end, and columns 0 to $m_c$ -1
3.g. Else if the maximum A(i, $m_c$) is in the middle column and i < $m_r$, and A(i, $m_c$ + 1) > A(i, $m_c$), then recurse in the quadrant bounded by rows 0 to $m_r$ -1 and columns $m_c$ + 1 to end.
3.h. Else if the maximum A(i, $m_c$) is in the middle column and i > $m_r$, and A(i, $m_c$ + 1) > A(i, $m_c$), then recurse in the quadrant bounded by rows $m_r$ + 1 to end, and columns $m_c$ + 1 to end.
Now that we stated the algorithm, rather elaborately, lets try to prove it by starting with base case.
[proof: O(n) 2-D Peak finding algorithm]
Consider the base case when only one row $r$ and columns $c_x$ to $c_y$ are left.
The maximum of that row, say, A(r,j) is the peak of that one row, r.
Lets unwind the recursion and add back the row r-1 to the array.
A(r, j) ceases to be a peak only if A(r-1, j) > A(r, j)
And steps 3.a, 3.d, 3.f, 3.h are the ones responsible for peeling off rows above.
Because of preconditions in the those steps, not only A(r-1, j), but for all c such that $c_x$ < c < $c_y$; A(r-1, c) ≤= A(r, j)
On similar lines, the proof can be extended to the case when we add back row r+1, as well as when the base case is a column.
[proof:end]
2 comments:
60 100 103 80 95
125 120 108 101 45
130 30 93 90 156
115 40 98 65 125
75 50 96 55 25
In the above table, isn't 95 at the top right corner a 2-D peak?
You are correct Sandeep, i missed spotting it
Guess you don't need an algorithm to find peaks :-) your two eyes enough
Will highlight the one you mentioned, and maybe add more explanation to this line in the proof as well:
"But, Step 2.a) in the above algorithm ensures that not only the one next to p, but, all of the elements in column c+1 are less than p if column c+1 was skipped out of the search."
You think it helps, or its detailed enough already?
Post a Comment